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    Abstract—The rising popularity of smart phones and social 
networking services (SNS) is changing many aspects of people’s 
collaboration. With the wide use of smart phones, collaborative 
work based on mobile web becomes loose and flexible. 
Collaborators have more chances to collaborate with other 
people anywhere at anytime. But most supporting tools for 
traditional computer supported cooperative work just support 
defined collaborative process for certain collaborators. They 
can’t satisfy the new requirements for loose collaboration where 
collaborators, collaborative process and time are unknown. 

    In this paper, we present an approach to using three mobile 
services based on SNS and mobile sensor data to recommend 
who, how and when to collaborate. This collaborative approach 
based on mobile services solves three basic key problems of 
modern collaboration. Firstly, we collect abundant data from 
SNS, do the semantic analysis, and dig out the suitable 
collaborators. Secondly, by analyzing the data from calendars 
and smart phones, we figure out the situations which 
collaborators are in, then reason the suitable contacts by our 
novel rules and finally recommend whether we can call or not, 
as well as the ranked text contacts. Thirdly, we use the calendar 
information to recommend the common free time for 
collaborators to work together. To verify the effectiveness of the 
approach and accuracy of collaborative recommendations, we 
have implemented an app including the services on android 
platform and designed two independent experiments. The case 
studies show the approach provides an effective and accurate 
means for collaborative recommendations. 

Keywords—mobile services, recommendation, social 
networking service, mobile applications 

I. INTRODUCTION 
The popularity of smart phones is changing many aspects 

of people’s collaboration. In the past, collaborative work is 
mostly accomplished under certain process by certain 
collaborators. Not only collaborative tasks but also 
collaborators and time are strictly defined. However, with 
the wide use of smart phones, the collaborative work based 
on mobile web becomes loose and flexible. People have 
more chances to collaborate with other people anywhere at 
anytime. The traditional computer supported cooperative 
work supporting tools can’t satisfy the new requirements for 
loose collaboration where collaborators, collaborative 
process and time are unknown. 

Although the collaborative work based on mobile web 
becomes loose and flexible, several basic key problems are 
common. First, it is to find collaborators. As modern 
collaboration becomes user-centered, any mobile user may 

ask for collaborations without preparation. Usually he or 
she doesn’t know who will be the most suitable 
collaborators. So the first problem is to find whom to 
collaborate with.  

Assuming we have found the collaborators, the second 
problem is how to contact them. Not only calls and SMS, 
but also SNS like Wechat and Skype are common contacts 
in smart phones. Various SNS bring users a big problem, 
that is, which contact is the most appropriate way to 
communicate with specific collaborator currently.  

At last, in most cases we should figure out the common 
free time as potential synchronous collaboration time for 
all the collaborators. So the third problem is to find when to 
collaborate as soon as possible for the mobile users. 

Who, how and when to collaborate are three basic 
collaborative problems. If they can be solved well, the loose 
mobile collaborations will be supported well.  

As mentioned, SNS is a platform to build social networks 
or social relations among people who share interests, 
activities, backgrounds or real-life connections. By using 
their mobile phones and SNS, mobile phone users can 
create their own profiles, make friends, share photos and 
videos, and share blogs. By September 30, 2014, Renren 
had approximately 219 million active users with over 80% 
of user time accessing services through mobile devices [1]. 
SNS users create lots of information every day, which 
provides us enough data to infer the information related to 
people, such as what they do, or what they are good at etc. 

  In this paper, we put forward a mobile collaborative 
approach using three mobile services to recommend who, 
how and when to collaborate, based on the former work [4].  

The approach has the following key contributions: 

�  It provides an effective algorithm for the 
collaborator recommendation.  

� It’s the first time to propose and solve the 
collaborative contact problem. 

� It uses data from SNS, calendars and smart phones. 
It’s convenient to use and mobile users don’t need to 
do extra work. 

The three mobile services on who, how and when to 
collaborate, can not only be used together to improve the 
collaboration efficiency among mobile users, but also be 
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used independently. We have implemented an app 
including the services on android platform. 
    The rest of the paper is organized as follows. Section 2 
presents related work. Section 3 describes the collaborative 
approach.  Section 4 demonstrates the implementation of 
the approach. Section 5 introduces the case studies. Section 
6 presents concluding remarks and future work. 

II. RELATED WORK 
    Recommender systems have been studied widely due to 
the incredible increasing information in the world, 
especially on the Web. These systems apply knowledge 
discovery techniques to make personalized 
recommendations that help people to sift through huge 
amount of available data [5, 6, 13].  
    Social Recommender systems are often used to 
recommend the suitable persons for users based on their 
preferences and activities, and they have been widely used 
to assist users in finding relative collaborators in various 
fields, such as movies (Netflix), SNS (Facebook) etc. 
Researchers have made a lot of research on the methods or 
tools of social recommendation systems [2, 5, 7, 8, 12].  

Elnaz 2012 et al. have presented an expert 
recommendation method that integrates content-based 
recommendation algorithms into a social network-based 
collaborative filtering [7]. Xu et al. have proposed a unified 
framework to extend the traditional CF (Collaborative 
Filtering) algorithms by utilizing the subgroups information 
for improving their top-N recommendation performance [5]. 
Liu et al. propose SoCo, which systematically combines 
contextual information with social network information to 
improve the quality of recommendations [8]. However, 
these methods above don’t concern the mobile sensor data 
that is very important to predict the user’s situation.  

    The most straightforward method for keyword extraction 
is using TFIDF [14] to rank candidate keywords and select 
the top-M as keywords. After PageRank becomes popular, 
graph-based ranking methods like TextRank [15], are 
becoming the state-of-the-art methods for keyword 
extraction. Both TFIDF and TextRank couldn’t solve the 
problem of vocabulary gap. To solve the vocabulary gap, a 
potential method that is called topic model has been 
proposed and the latent Dirichlet allocation (LDA)[11] is 
the most popular topic model. Based on these methods, we 
propose an efficient and effective method for collaborator 
recommender service, which is mainly based on TFIDF to 
extract keywords from user data and calculate the relevance 
between keywords and users.  
    There is also some related work on collaborative contact 
recommenders. Min et al. have implemented a contact 
recommendation application on mobile device that 
recommends phone numbers in a phonebook according to 
the user’s situation based on logs stored in mobile devices 

[9]. But it recommends people suitable to contact, rather 
than suitable ways to contact specific friends. Gomes et al. 
design the Mobile Activity Recognition System (MARS) 
where the classifier is built on-board mobile device through 
ubiquitous data stream mining in an incremental manner 
[10]. However, MARS doesn’t use calendar information, 
which is effective to find whether people are having 
meetings or doing other things that should not be disturbed. 
Yu et al. propose to mine common context-aware 
preferences from many users' context logs and represent 
each user's personal context-aware preferences as a 
distribution of the mined common context-aware 
preferences [3]. 

     Analyzing the related work above, they only concern 
one issue of collaborations, and seldom consider mobile 
data. Considering who, how and when to collaborate as 
three key issues for collaboration, we put forward an 
approach which uses data from SNSs, calendars and smart 
phones to solve the key issues on collaboration together. 

 

Fig. 1. A collaborative approach based on mobile services 

III. MOBILE COLLABORATIVE APPROACH 
Our mobile collaborative approach is described as figure 

1.  
The approach consists of three mobile services, including 

collaborator recommendation service, collaborative contact 
recommendation service and collaborative time 
recommendation service. The collaborator recommendation 
service collects and deals with abundant data from SNS. It 
can recommend suitable collaborators according to queries, 
which solves the problem of whom to collaborate with. 
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Collaborative contact recommendation service analyzes the 
data from calendars and smart phones, figures out the 
situations which collaborators are in, reasons the suitable 
contacts by some novel rules and finally recommends the 
ranked suitable text contacts and whether we can call. It 
aims to recommend how to collaborate. The potential 
collaborators can be grouped and collaborative time 
recommendation service utilizes the data from bound 
calendars and recommends common free time, which solves 
the problem of when to collaborate.  

A. Collaborator Recommendation service 
Collaborator recommender pretreats data from SNS and 

recommends the collaborators according to input queries. It 
helps to find the collaborators satisfying specific 
requirements. In figure 2, we show the process. 

 
Fig. 2. Collaborator recommender process 

As mentioned, renren is one of the most popular SNS in 
China. Statuses are short messages limited in 240 words 
and blogs are usually long articles. Both of them are the 
records of users’ daily life, which can reflect the interests 
and expertise of users. Besides, statuses and blogs are the 
most popular services, which have relatively large contents 
for data mining. We can get blogs and statuses posted by 
user’s friends via API provided by Renren Platform in order 
to dig out the interests and expertise of users. Firstly we 
clean the useless data from statuses and blogs, such like 
emotions icons and mentioned users. Secondly we choose 
“jieba” Chinese words segmentation tools to segment the 
statuses and blogs, and leave nominal words and English 
words to analyze. 

Next we introduce the two key steps in detail. 

1) Frequency-based computation 
Term frequency and inverse document-frequency (TFIDF) 

is a numerical statistic that is intended to reflect how 
important a word is to a document. But it’s designed for a 
single formal document such as a news article or a scientific 
paper. However, a Renren user will post hundreds of 
statuses and blogs. Our collaborator recommender should 
rank all the users based on all the statuses and blogs 
according to the queries. That requires us to figure out a 
numerical statistic of the user with lots of documents rather 
than the TFIDF of every single status and blog. We bring in 
status frequency and our improved algorithms with statuses 
and blogs are different from each other. We will introduce 
them separately. 

a) Statuses 
A user has hundreds of statuses that are limited in 240 

words each.  A status is too short to be considered as a 
document so that we can’t calculate the TFIDF for every 
status. It’s a straightforward solution to consider all the 
statuses of one user as one document. However it will lose 
some information. We adopt status frequency (SF) to solve 
the problem. 

Given a user u and his/her status , the term 
frequency TF(q) of the candidate query q is the number of 
the occurrences of q in du. We get IDF(q) via dividing the 
total number of documents by the number of documents 
containing the term q. Status frequency (SF) is measured as 
follows: 

 
Where  is the number of statuses containing q, 

and |du| is the total number of statuses for user u. 
 Based on TF(q), IDF(q) and SF(q), we define the value 

VS(q) as follows: 

 
TF(q) weighs how important the query q is in the 

document. IDF(q) is a measure on how much information 
the query q provides, that is, whether the term is common or 
rare across all documents. SF(q) considers the amount of 
statuses, that is, the habit of users, because if we only use 
TFIDF, users who post more will have a higher score, 
which is not fair. 

b) Blogs 
Blogs are usually much longer than statuses, so they 

contain enough information for TFIDF calculation. We 
calculate TFIDF for every blog of users. 

Given a user u and his/her blogs , the term 
frequency TFb(q) of the candidate query q is the number of 
the occurrences of q in blogs b. We get IDFb(q) via dividing 
the total number of blogs by the number of blogs containing 
the term q. We define the value VB(q) as follows: 
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Where |du| is the total number of blogs for user u. The 

reason why it’s divided by | du| is to remove the effects of 
habits of users. Unless, users who like to share interests in 
blogs will have a higher score than those who have the 
same interests.  

The final value of the user according to query q is 
defined as follows: 

  
Constant  is used to weigh the importance of blogs and 

statuses. In our experiments, we set  = 0.4 which achieves 
the best performance. 

2) Synonym dealing 
Our frequency-based computation is based on an 

assumption that the query words are all exactly in the 
statuses and blogs. However, in many conditions there is a 
gap between the queries and real needs. For example, if a 
user wants to find someone who is interested in programs, 
probably he/she will search by the query “program”. In fact, 
people interested in “code” also satisfy the requirements. 
We use synonym set to overcome the gap.  

In our real system, we utilize a synonym set based on 
HowNet lexicon [16], which consists of about 60 thousands 
of Chinese words. Every word in the synonym set has a 
collection of similar words with similarity degree. Given a 
query q, the synonym value of p is defined as follows: 

 
Where w(q) is the similar word of q and s(q, w(q)) is the 

similarity degree between q and w(q), which is a value 
between 0 and 1. k is the min threshold value. 

Then we define the final value of q as follows. 

 
Constant  is to deduce the bias of synonym. Since users 

use q to search, q should be the most important query word. 

If the query consists more than one word, we add all the 
VF(q). When q is inputted by a user, we calculate VF(q) of 
all his friends. We rank the friends by the value VF(q) and 
return the most relevant friends as potential collaborators. 

B. Collaborative Contact Recommendation Service 
We have proposed contact recommender in [4]. So here 

we just give a general introduction of the approach to make 
the paper self-complete. 

Figure 3 shows the whole process of collaborative 
contact recommendation service. First of all, users should 
register in the service, then they can bind SNS and calendar 
accounts on the service, and add friends through their 
phone number, so that the data can be calculated and people 
can get the recommended contacts of friends. The service 
can be useful only when both sides use it. 

Besides the calendar data, the service collects lots of 
information from sensors in smart phones, such as wifi 
signal, carrier signal, time when phones are last used, alarm 
clock information in the phone, microphone using condition, 
recently answered calls, recently rejected calls, running 
states of SNS, location, speed, accelerated speed and so on. 
The process consists of two aspects, call recommendation 
and text contact recommendation. 

1) Call recommendation 
Calls are the most direct way to reach people, but at the 

same time calls disturb people most in some specific 
conditions. It disturbs in two ways. Firstly, calls always 
come with long time rings and vibrations that will disturb 
people. Secondly, call is a synchronous communication way 
that needs people to answer immediately. As a result, 
people should stop their work in hand. 

When calls should not be recommended, conditions can 
be divided into three categories. We use two ways to figure 
out the conditions. The first way is that, through activity 
recognition we recognize the specific conditions of the user 
we want to contact. Based on the recognized conditions we 
recommend whether calls are suitable. We introduce some 
conditions in details as follows. 

Calendar

Phone Data Recommended 
Calls

User Habbits

Recommended 
Text Contacts

Recommended 
Contacts

Semantic
analysis

Direct rules

feedback

Statistics

 
Fig. 3. Collaborative contact recommendation service process 
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a) Meeting. The server gets the bound calendar data by 
google calendar API. Through semantic analysis of 
current event, we will know whether there are any 
meetings right now. The same applies to having classes. 
The recommender recommends no calls if the users we 
want to contact are in periodic activities or meetings. 

b) Driving. It’s relatively complex to figure out driving 
because we should consider several elements. First, the 
speed is relatively high, like 100 km/h. Second, the 
current location should be a road rather than a room. Here 
comes the third factor. If phones have not been used for a 
long time, like 30 minutes, probably people are driving 
and should not be recommended to call. 

c) Sleeping. We find that alarms have large potential 
relationships with sleep. If there is a waking up alarm, 
calls should not be recommended in a short period of 
time before it alarms, like 20 minutes. We also find the 
periodic alarms in the morning or at noon will enlarge the 
possibility of being a waking up alarm. Besides, if the 
locations of phones don’t change, phones are not used for 
a long time, the locations are at home, and the time is 
night, there is a large possibility that people are sleeping, 
or people don’t take the phone by themselves. 

The second way is that we set some novel general rules 
to reason the call recommendation. We take several rules 
for example. 

a) Carrier signals. If there are no carrier signals, calls 
can’t be made successfully. The recommender will 
recommend not to call people. 
b) Temporal locality. Generally the situations are 
continuous because doing anything will take a period of 
time. If there are any rejected calls recently, probably it’s 
better not to call. Vice versa. Though we don’t know 
what specific situations people are in, we can still 
recommend the right result. 
c) Microphone. If the microphone is being used, it 
implies that people are available to listen to the sound 
information. If calls are not being made currently, we can 
directly recommend calls. 
d) Sound. If the sound sensor finds it’s a noisy 
environment, the calls quality will be affected. We need 
not figure out whether it’s in a KTV or a market. We 
intend not to recommend calls. 
When different conditions are satisfied at the same time, 

we have priorities. The general rules, such as temporal 
locality and microphone have the highest priority.  

2) Text Contact recommendation 
In the past, SMS is the most usual way to send text 

among mobile phones. However, with the development of 
the mobile data, people use SNS to send text messages 
much more often than before because SNS are less 
expensive ways, and also very convenient.  

We choose the most popular SNS that are used as text 
communication platforms, such as Wechat and QQ. The 
recommender collects SNS and SMS data, and calculates 
the using frequency of them, which indicates people’s 
habits of using text messages. It ranks the text message 
contacts based on two elements. 1) The last time the SNS 
was used on desk. 2) The frequency of using the SNS. We 
don’t consider the last time the SNS run, because in smart 
phones if you don’t stop the program, the program will not 
stop by itself. 

Now we introduce how to rank the contacts list. We take 
QQ and Wechat as an example. Assume Tw and Tq are 
respectively the last used time of Wechat and QQ on desk. 
Fw and Fq are respectively the use frequency of Wechat 
and QQ. And we set a constant k, which means a time 
interval. The current time is t. The Order rule: 

if  t >Tw > Tq >t-k or t>Tw >t-k> Tq  then 
Wechat is ranked before QQ 

else if  t> Tq>Tw >t-k or  t> Tq>t-k> Tw  then 
QQ is ranked  before Wechat 

else if  Tw  <t-k and Tq  <t-k then 
if Fw  > Fq then 

Wechat is ranked  before QQ 
Else  QQ is ranked before Wechat 

Besides, if there is a wifi but no carrier signals, SMS will 
not be recommended even people use it very often because 
SMS can’t be sent to friends’ phones without carrier signals. 
Finally, the recommender provides a list of ranked text 
message contacts. 

To make the recommendation algorithm smarter when 
more people use the recommender, people are encouraged 
to return feedbacks, which contain the real best contact used 
in every communication. 

C. Collaborative Time Recommendation Service 
After users get the recommended collaborators and 

contact, the user as an organizer can organize all the 
collaborators for one specific task into one group. 
Collaborative time recommender aims to recommend a 
suitable time for all the collaborators in one group.  

The organizer can set some requirements for time. For 
example, the time should be at night and the length of the 
time should be 2 hours. Then the recommender will get 
calendar information of all the collaborators through API 
provided by google and calculate the common free time 
satisfying the time requirements. If there is no satisfied time, 
the recommender will recommend the time when most 
collaborators are free. After the organizer chooses one from 
the list of free time, the recommender will inform all the 
collaborators in the group about the chosen time. If 
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collaborators accept the time, the new event will be added 
to the google calendar of collaborators. 

Collaborative time recommender reduces the costs of 
finding a common time and helps the arrangement of 
schedule.  

IV. IMPLEMENTATION OF THE APPROACH 
We implement the approach as an application including 

three mobile services on Android smart phones. A user 
should register an account with a mobile phone number and 
an Email address. The application will get contacts of the 
phone, and the user can add friends through the contacts. 
Besides, the user can bind his SNS accounts, such as google 
calendar account and Renren account to offer more 
information. The application will collect all the related data, 
preprocess and send intermediate result to the server in time. 
The server will get the information from bound SNS 
accounts, calculate and analyze the data both from mobile 
phones and SNS. 

When users want to find some specific people to 
collaborate with, they just type the query in the search box. 
The application will return a list of friends with the related 
statuses and blogs. Users can check all the information and 
choose most suitable collaborators. If it’s a complex task 
that needs more than one collaborator, users can add the 
collaborators in one group.  

To make sure the collaborations, users have many 
situations to contact friends. Users can get the real time 
recommendation of friends through the server so that they 
can contact friends in the best way. What users need to do 
is only to click the friend icon in the list and it will show 
whether the friend is available to be called and list the 
ranked text contact based on the user habits.  

When users have a group of collaborators, users usually 
need a common free time for synchronous collaboration. 
Users enter the group and choose the time limitations. For 
example, they can choose the length of the time and the 
preference for morning or afternoon. The application will 
get schedules from the bound calendars and calculate the 
satisfied time. Users can choose the best one from the list 
and the application will inform the rest collaborators in the 
group. Collaborators can confirm the collaborative time and 
the time will be allocated in the calendar.  

V. EXPERIMENTS  
In this section, to verify the effectiveness of the approach 

and accuracy for collaborative recommendations, we design 
two independent experiments. The first experiment is to 
verify whether we can dig out the suitable collaborators 
when the users search specific topics related to the suitable 
collaborators. The second experiment is to evaluate the 
service accuracy of how to contact. 

A. Experiment results of collaborator recommendation 
service 

The maximum number of test users for Renren Open 
Platform is ten, so we select 10 students from PKU, 
consisting of 5 undergraduate students and 5 graduate 
students, to use the collaborator recommender service. All 
of them have never heard about the application and we 
install the application in their own mobile phones and they 
will feedback whether the recommended collaborators are 
related to the specific topics or not. 

Before the students use the application, we need them to 
bind their SNS accounts on the application and we will get 
their friends list, the blogs and statuses of their friends for 
collaborator recommendation. 

Figure 4 shows the number of the friends, friends’ blogs 
and friends’ statuses for each student. To make the figure 
clear, we just show the data of 3 typical users whose id are 
15, 17, 18.  We can see that every student has about 500 
friends and the number of statuses is much more than the 
number of blogs. What’s more, for every student, the data 
needing to be processed is large. 

After binding the SNS accounts, all the students will use 
the application when they want to find the collaborators. 

The application will recommend a sorted list of 20 relevant 
collaborators after a student searches one topic related to 
the collaborators. The student can click the recommended 
collaborator, read the related statuses and blogs that are the 
reasons why this friend is recommended, judge whether the 
recommended collaborators are suitable for collaboration 
and return the feedback. After the experiment, every student 
has searched about 80 topics to get recommended 
collaborators and we got 713 feedbacks. 

Because there are many different collaborative situations 
in which users will need to find different numbers of 
collaborators. For Example, when users have a question 
about Python programming, they just need to find one 
suitable collaborator while they need about 5 suitable 
collaborators when they want to develop an android 
application. What’s more, they often need to find about 10 
suitable collaborators to create a small discussion group and 

 
Fig. 4. Statistics data for each user 
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about 20 suitable collaborators to create a big discussion 
group. These are the main situations when the application 
will be used. So we need to calculate the accuracy for the 
different situations. 

 Figure 5 shows the experiment results. To make the 
figure clear, we just show the feedback accuracy of 3 
typical users whose id are 15, 17, 18 and the total feedback 
accuracy in different situations. The results show that the 
accuracy for one suitable collaborator recommendation is 
relatively high, which is 86.2%. With more collaborators 
users want to find, the accuracy decreases. The worst 
average accuracy is 44.4% when users want to find 20 
suitable collaborators. That’s because the recommended 
collaborator list is sorted by relevance and the later 
recommended collaborators are less relative to the specific 
topic, compared with the top ones.  

 
Fig. 6. Variance of accuracy 

Figure 6 shows the variance of accuracy. It implies that 
the accuracy is stable because variances of all the accuracy 
are small. Besides, variance of one collaborator is smallest 
which means the first recommended collaborator is most 
stable to be the suitable one.  

The result implies that the application is effective when 
users need to find a small group of collaborators who are 
related to the specific topics. It has the limitation when 

users want to find more than 10 collaborators because there 
are not enough friends on the SNS who are relative to the 
specific topics.  

B. Experiment results of collaborative contact 
recommendation service 

We find 50 students from PKU, consisting of 21 
undergraduate students and 29 graduate students, to use the 
collaborative contact recommender service. All of them 
have never heard about the application, and we install the 
application in their own mobile phones and train them for 
10 minutes. They can see which recommendation is made to 
their friends from the application.  All the students do what 
they will as usual. They are asked to take the phones with 
them and check the application as often as possible and 
return the feedback that contains their genuine best contacts. 
If the recommendation is the same as the feedback, we 
define it is right. That means users can feed back whether 
the call recommendation and text contact recommendation 
are right. We got 1021 pieces of feedbacks totally. 

TABLE 1. CONTACT RECOMMENDATION RESULTS 

Cases Ratio 

Calls recommended, right 97.1% 

Calls  not recommended, right 82.4% 

Total calls, right 92.2% 

Ranked text messages contacts ,right 98.0% 

Table 1 shows the experiment results. The right ratio is 
relatively high. For example, when the application 
recommends calls, 97.1% people are suitable to be called.  
However, when the application doesn’t recommend calls, 
17.6% people can be called in fact. One reason is that we 
use strict principles. For example, though a man rejected a 
call minutes ago, the situation may change right now, but 
we still don’t recommend calling.  98.0% of the ranked text 
message contacts are right, probably although many SNS 
may be installed on the phones, people use one much more 
than the others.  

 
Fig. 5. Accuracy for different number of collaborators 
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Figure 7 shows people distribution in ratio intervals. We 
calculate people number in different ratio intervals. Most 
people have the right recommendation ratio between 80% 
and 100%. It implies that the differences of 
recommendation ratio among people are not that obvious. 
That is to say, the application is suitable for all kinds of 
people to use. The reason may be that conditions are 
basically similar when people are available to answer calls. 

VI. CONCLUSION AND FUTURE WORK 
We design and implement a collaborative approach using 

three mobile services based on SNS, calendar data, and 
sensor data from smart phones. The services can help users 
to find the most suitable collaborators according to specific 
topics, the most appropriate way to contact collaborators, 
which makes the information accessible to friends and gets 
the replies from collaborators as soon as possible with least 
bother, and the common free time for synchronous 
collaboration. The three services can be used either together 
or independently. 

In the collaborator recommendation service, two 
different but effective algorithms for statuses and blogs are 
designed and used respectively. In the collaborative contact 
recommendation service, calendar data is used for the first 
time to figure out the current activity of a collaborator, 
which makes the inference more sufficient. Furthermore, 
smart phone data are effectively used by novel rules and 
mathematical statistics to recommend the best way to 
contact the collaborator. The experiments show that the 
precision of collaborator recommendation and contact 
recommendation is high respectively.  

However, there are still several open problems that need 
to be further studied: 1) The testers are all students and the 
amount of feedbacks is relatively small; 2) Our synonym 
dealing approach uses constant dictionary that can’t deal 
with new words created every day. 

ACKNOWLEDGMENTS 
This effort is sponsored by the National Basic Research 

Program of China (973) under Grant No. 2011CB302604, 
the National Natural Science Foundation of China under 
Grant No.61421091, No.U1201252, the Seeding Grant for 
Medicine and Information Sciences of Peking University 
(2014-MI-23). 

REFERENCES 
[1] http://www.renren-inc.com/en/ 

[2] Weilong Yao, Jing He, Guangyan Huang, Yanchun Zhang. SoRank: 
Incorporating Social Information into Learning to Rank Models for 
Recommendation, In Proceedings of 2014 World Wide Web 
Conference (WWW’14), Seoul, Korea, April 7-11, 2014, 409-410. 

[3] Kuifei Yu, Baoxian Zhang, Hengshu Zhu, Huanhuan Cao, Jilei Tian. 
Towards personalized context-aware recommendation by mining 
context logs through topic models. In Proceedings of the 16th 
Pacific-Asia conference on Advances in Knowledge Discovery and 
Data Mining (PAKDD 2012), Part I, LNAI 7301, pp. 431–443, 2012. 

[4] Xiwei Zhuang, Yanchun Sun, Kuiwei. A Smart Mobile Contact 
Recommender Based on Smart Phone Data. In Proceedings of ACM 
Internetware 2014 (Internetware’14), Hongkong, Nov. 16-21, 2014.  

[5] Bin Xu, Jiajun Bu, Chun Chen, Deng Cai. An Exploration of 
improving Collaborative Recommender Systems via User-Item 
Subgroups. In Proceedings of 2012 World Wide Web Conference 
(WWW’12), Lyon, France, April 16-20, 2012, 21-30.  

[6] Ido Guy, Uri Avraham, David Carmel, Sigalit Ur, Michal Jacovi, 
and Inbal Ronen. Mining Expertise and Interests from Social Media. 
In Proceedings of 2013 World Wide Web Conference (WWW 2013), 
Rio de Janeiro, Brazil, May 13-17, 2013, 515-526.  

[7] Elnaz Davoodi, Mohsen Afsharchi, Keivan Kianmehr. A Social 
Network-Based Approach to Expert Recommendation System. In 
Proceedings of Hybrid Artificial Intelligent Systems  (HAIS 2012), 
Lecture Notes in Computer Science Volume 7208, 2012,  91-102.  

[8] Xin Liu, Karl Aberer, SoCo: A Social Network Aided Context-
Aware Recommender System. In Proceedings of 2013 World Wide 
Web Conference (WWW 2013), Rio de Janeiro, Brazil, May 13-17, 
2013, 781-791. 

[9] Min J K, Kim H T, Cho S B. Social and Personal Context Modeling 
for Contact List Recommendation on Mobile Device[C]. In 
Proceedings of Web Intelligence and Intelligent Agent Technology 
(WI-IAT'08), 2008, 381-384. 

[10] Gomes J B, Krishnaswamy S, Gaber M M, et al. Mobile activity 
recognition using ubiquitous data stream mining[M]. In Proceedings 
of 2012 Data Warehousing and Knowledge Discovery. Springer 
Berlin Heidelberg, 2012, 130-141. 

[11] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation. Journal 
of Machine Learning Research, 2003, 3: 993–1022 

[12] Quan Yuan, Gao Cong, Chin-Yew Lin. COM: a Generative Model 
for Group Recommendation. In Proceedings of ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD’14), 
New York, NY, USA, August 24-27, 164-172. 

[13] Ge Gao, Pamela Hinds, Chen Zhao. Closure VS. Structural Holes: 
How Social Network Information and Culture Affect Choice of 
Collaborators. In Proceedings of 2013 ACM’s conference on 
Computer Supported Cooperative Work (CSCW’13), San Antonio, 
Texas, USA, Feb. 23-27, 2013, 5-17. 

[14] Salton G, Buckley C. Term-weighting approaches in automatic text 
retrieval. Information Processing and Management, 1988, 24(5): 
513–523. 

[15] Mihalcea R, Tarau P. Textrank: bringing order into texts. In 
Proceedings of 2004 Conference on Empirical Methods in Natural 
Language Processing, 2004, 404–411. 

[16] http://www.keenage.com/ 

Fig. 7. People distribution in ratio intervals 

24


