2015 IEEE International Conference on Mobile Services

Using Mobile Services Based on SNS to Recommend Who,

How and When to Collaborate
Yanchun Sun, Xiwei Zhuang, Kui Wei, Xudong Shan, Tianyuan Jiang

Institute of Software, School of Electronics Engineering & Computer Science, Peking University,
Key laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R.China
Email: sunyc@pku.edu.cn, {zhuangxw12, weikuil3}@sei.pku.edu.cn, {shanxd, jtyuan}@pku.edu.cn

Abstract—The rising popularity of smart phones and social
networking services (SNS) is changing many aspects of people’s
collaboration. With the wide use of smart phones, collaborative
work based on mobile web becomes loose and flexible.
Collaborators have more chances to collaborate with other
people anywhere at anytime. But most supporting tools for
traditional computer supported cooperative work just support
defined collaborative process for certain collaborators. They
can’t satisfy the new requirements for loose collaboration where
collaborators, collaborative process and time are unknown.

In this paper, we present an approach to using three mobile
services based on SNS and mobile sensor data to recommend
who, how and when to collaborate. This collaborative approach
based on mobile services solves three basic key problems of
modern collaboration. Firstly, we collect abundant data from
SNS, do the semantic analysis, and dig out the suitable
collaborators. Secondly, by analyzing the data from calendars
and smart phones, we figure out the situations which
collaborators are in, then reason the suitable contacts by our
novel rules and finally recommend whether we can call or not,
as well as the ranked text contacts. Thirdly, we use the calendar
information to recommend the common free time for
collaborators to work together. To verify the effectiveness of the
approach and accuracy of collaborative recommendations, we
have implemented an app including the services on android
platform and designed two independent experiments. The case
studies show the approach provides an effective and accurate
means for collaborative recommendations.

Keywords—mobile services, recommendation, social

networking service, mobile applications

1. INTRODUCTION

The popularity of smart phones is changing many aspects
of people’s collaboration. In the past, collaborative work is
mostly accomplished under certain process by certain
collaborators. Not only collaborative tasks but also
collaborators and time are strictly defined. However, with
the wide use of smart phones, the collaborative work based
on mobile web becomes loose and flexible. People have
more chances to collaborate with other people anywhere at
anytime. The traditional computer supported cooperative
work supporting tools can’t satisfy the new requirements for
loose collaboration where collaborators, collaborative
process and time are unknown.

Although the collaborative work based on mobile web
becomes loose and flexible, several basic key problems are
common. First, it is to find collaborators. As modern
collaboration becomes user-centered, any mobile user may

978-1-4673-7284-8/15 $31.00 © 2015 IEEE
DOI 10.1109/MS.2015.13

ask for collaborations without preparation. Usually he or
she doesn’t know who will be the most suitable
collaborators. So the first problem is to find whom to
collaborate with.

Assuming we have found the collaborators, the second
problem is how to contact them. Not only calls and SMS,
but also SNS like Wechat and Skype are common contacts
in smart phones. Various SNS bring users a big problem,
that is, which contact is the most appropriate way to
communicate with specific collaborator currently.

At last, in most cases we should figure out the common
free time as potential synchronous collaboration time for
all the collaborators. So the third problem is to find when to
collaborate as soon as possible for the mobile users.

Who, how and when to collaborate are three basic
collaborative problems. If they can be solved well, the loose
mobile collaborations will be supported well.

As mentioned, SNS is a platform to build social networks
or social relations among people who share interests,
activities, backgrounds or real-life connections. By using
their mobile phones and SNS, mobile phone users can
create their own profiles, make friends, share photos and
videos, and share blogs. By September 30, 2014, Renren
had approximately 219 million active users with over 80%
of user time accessing services through mobile devices [1].
SNS users create lots of information every day, which
provides us enough data to infer the information related to
people, such as what they do, or what they are good at etc.

In this paper, we put forward a mobile collaborative
approach using three mobile services to recommend who,
how and when to collaborate, based on the former work [4].

The approach has the following key contributions:

e It provides an effective algorithm for the

collaborator recommendation.

e It’s the first time to propose and solve the
collaborative contact problem.

e It uses data from SNS, calendars and smart phones.
It’s convenient to use and mobile users don’t need to
do extra work.

The three mobile services on who, how and when to
collaborate, can not only be used together to improve the
collaboration efficiency among mobile users, but also be

@) CO‘ pute
1(!) I
& SOCIety

used independently. We have implemented an app
including the services on android platform.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes the collaborative
approach. Section 4 demonstrates the implementation of
the approach. Section 5 introduces the case studies. Section
6 presents concluding remarks and future work.

II. RELATED WORK

Recommender systems have been studied widely due to
the incredible increasing information in the world,
especially on the Web. These systems apply knowledge
discovery techniques to make personalized
recommendations that help people to sift through huge
amount of available data [5, 6, 13].

Social Recommender systems are often used to
recommend the suitable persons for users based on their
preferences and activities, and they have been widely used
to assist users in finding relative collaborators in various
fields, such as movies (Netflix), SNS (Facebook) etc.
Researchers have made a lot of research on the methods or
tools of social recommendation systems [2, 5, 7, 8, 12].

Elnaz 2012 et al. have presented an expert
recommendation method that integrates content-based
recommendation algorithms into a social network-based
collaborative filtering [7]. Xu et al. have proposed a unified
framework to extend the traditional CF (Collaborative
Filtering) algorithms by utilizing the subgroups information

for improving their top-N recommendation performance [5].

Liu et al. propose SoCo, which systematically combines
contextual information with social network information to
improve the quality of recommendations [8]. However,
these methods above don’t concern the mobile sensor data
that is very important to predict the user’s situation.

The most straightforward method for keyword extraction
is using TFIDF [14] to rank candidate keywords and select
the top-M as keywords. After PageRank becomes popular,
graph-based ranking methods like TextRank [15], are
becoming the state-of-the-art methods for keyword
extraction. Both TFIDF and TextRank couldn’t solve the
problem of vocabulary gap. To solve the vocabulary gap, a
potential method that is called topic model has been
proposed and the latent Dirichlet allocation (LDA)[11] is
the most popular topic model. Based on these methods, we
propose an efficient and effective method for collaborator
recommender service, which is mainly based on TFIDF to
extract keywords from user data and calculate the relevance
between keywords and users.

There is also some related work on collaborative contact
recommenders. Min et al. have implemented a contact
recommendation application on mobile device that
recommends phone numbers in a phonebook according to
the user’s situation based on logs stored in mobile devices

[9]. But it recommends people suitable to contact, rather
than suitable ways to contact specific friends. Gomes et al.
design the Mobile Activity Recognition System (MARS)
where the classifier is built on-board mobile device through
ubiquitous data stream mining in an incremental manner
[10]. However, MARS doesn’t use calendar information,
which is effective to find whether people are having
meetings or doing other things that should not be disturbed.
Yu et al. propose to mine common context-aware
preferences from many users' context logs and represent
each user's personal context-aware preferences as a
distribution of the mined common -context-aware
preferences [3].

Analyzing the related work above, they only concern
one issue of collaborations, and seldom consider mobile
data. Considering who, how and when to collaborate as
three key issues for collaboration, we put forward an
approach which uses data from SNSs, calendars and smart
phones to solve the key issues on collaboration together.

collaborators

G ative Colla@@iators
ontact

-

io--.
- -

Collaberator

rative
=
=

.
E
- -

Collaborative time
recommendation service

B
TV
©J90

Mobile technology

-

Collaborative contact

dati dation service

T service T

L3

INNoLB @uame Google

= O
S

SN

Fig. 1. A collaborative approach based on mobile services

III. MOBILE COLLABORATIVE APPROACH

Our mobile collaborative approach is described as figure
L.

The approach consists of three mobile services, including
collaborator recommendation service, collaborative contact
recommendation service and collaborative time
recommendation service. The collaborator recommendation
service collects and deals with abundant data from SNS. It
can recommend suitable collaborators according to queries,
which solves the problem of whom to collaborate with.

Collaborative contact recommendation service analyzes the
data from calendars and smart phones, figures out the
situations which collaborators are in, reasons the suitable
contacts by some novel rules and finally recommends the
ranked suitable text contacts and whether we can call. It
aims to recommend how to collaborate. The potential
collaborators can be grouped and collaborative time
recommendation service utilizes the data from bound
calendars and recommends common free time, which solves
the problem of when to collaborate.

A. Collaborator Recommendation service

Collaborator recommender pretreats data from SNS and
recommends the collaborators according to input queries. It
helps to find the collaborators satisfying specific
requirements. In figure 2, we show the process.

User ID

v

SNS data acquisition

v

Data cleaning

v

Chinese word
segmentation & part-of-
speech tagging

v

Frequency-based
computation

Output recommended

Input gueries
e collaborators

Synonym dealing —

Fig. 2. Collaborator recommender process

As mentioned, renren is one of the most popular SNS in
China. Statuses are short messages limited in 240 words
and blogs are usually long articles. Both of them are the
records of users’ daily life, which can reflect the interests
and expertise of users. Besides, statuses and blogs are the
most popular services, which have relatively large contents
for data mining. We can get blogs and statuses posted by
user’s friends via API provided by Renren Platform in order
to dig out the interests and expertise of users. Firstly we
clean the useless data from statuses and blogs, such like
emotions icons and mentioned users. Secondly we choose
“jieba” Chinese words segmentation tools to segment the
statuses and blogs, and leave nominal words and English
words to analyze.

Next we introduce the two key steps in detail.

1) Frequency-based computation

Term frequency and inverse document-frequency (TFIDF)
is a numerical statistic that is intended to reflect how
important a word is to a document. But it’s designed for a
single formal document such as a news article or a scientific
paper. However, a Renren user will post hundreds of
statuses and blogs. Our collaborator recommender should
rank all the users based on all the statuses and blogs
according to the queries. That requires us to figure out a
numerical statistic of the user with lots of documents rather
than the TFIDF of every single status and blog. We bring in
status frequency and our improved algorithms with statuses
and blogs are different from each other. We will introduce
them separately.

a) Statuses

A user has hundreds of statuses that are limited in 240
words each. A status is too short to be considered as a
document so that we can’t calculate the TFIDF for every
status. It’s a straightforward solution to consider all the
statuses of one user as one document. However it will lose
some information. We adopt status frequency (SF) to solve
the problem.

Given a user u and his/her status %€ &y , the term
frequency TF(g) of the candidate query ¢ is the number of
the occurrences of ¢ in du. We get IDF(g) via dividing the
total number of documents by the number of documents
containing the term ¢. Status frequency (SF) is measured as
follows:

SF(q) — [{s:gEs }|‘J

|yl
Where |{5:6 €5 }| is the number of statuses containing ¢,
and |du| is the total number of statuses for user u.

Based on TF(gq), IDF(¢) and SF(g), we define the value
VS(g) as follows:

VS(q) = TF(q) = IDF(q) * log,(SF(q) + 1)«

TF(g) weighs how important the query ¢ is in the
document. IDF(g) is a measure on how much information
the query q provides, that is, whether the term is common or
rare across all documents. SF(g) considers the amount of
statuses, that is, the habit of users, because if we only use
TFIDF, users who post more will have a higher score,
which is not fair.

b) Blogs

Blogs are usually much longer than statuses, so they
contain enough information for TFIDF calculation. We
calculate TFIDF for every blog of users.

Given a user u and his/her blogs b €y the term
frequency TFy(g) of the candidate query g is the number of
the occurrences of ¢ in blogs b. We get IDFy(g) via dividing
the total number of blogs by the number of blogs containing
the term g. We define the value VB(g) as follows:

Yea,(TFy(q) = IDFy(q))
|du|

VB(q) =

Where |d,| is the total number of blogs for user u. The
reason why it’s divided by | d,| is to remove the effects of
habits of users. Unless, users who like to share interests in
blogs will have a higher score than those who have the
same interests.

The final value of the user according to query ¢ is
defined as follows:

V(q) = VB(q) + o * VS(q)-

Constant o is used to weigh the importance of blogs and
statuses. In our experiments, we set o = 0.4 which achieves
the best performance.

2) Synonym dealing

Our frequency-based computation is based on an
assumption that the query words are all exactly in the
statuses and blogs. However, in many conditions there is a
gap between the queries and real needs. For example, if a
user wants to find someone who is interested in programs,
probably he/she will search by the query “program”. In fact,
people interested in “code” also satisfy the requirements.
We use synonym set to overcome the gap.

In our real system, we utilize a synonym set based on
HowNet lexicon [16], which consists of about 60 thousands
of Chinese words. Every word in the synonym set has a
collection of similar words with similarity degree. Given a
query g, the synonym value of p is defined as follows:

VS(q) = V(w(@) = S(q,w(@)
s(qw(g))=k

Where w(q) is the similar word of ¢ and s(g, w(g)) is the
similarity degree between g and w(g), which is a value
between 0 and 1. k is the min threshold value.

Then we define the final value of ¢ as follows.
VE(q) =V(q) + B = VS(q)-

Constant § is to deduce the bias of synonym. Since users
use ¢ to search, ¢ should be the most important query word.

If the query consists more than one word, we add all the
VF(g). When g is inputted by a user, we calculate VF(g) of
all his friends. We rank the friends by the value VF(q) and
return the most relevant friends as potential collaborators.

B. Collaborative Contact Recommendation Service

We have proposed contact recommender in [4]. So here
we just give a general introduction of the approach to make
the paper self-complete.

Figure 3 shows the whole process of collaborative
contact recommendation service. First of all, users should
register in the service, then they can bind SNS and calendar
accounts on the service, and add friends through their
phone number, so that the data can be calculated and people
can get the recommended contacts of friends. The service
can be useful only when both sides use it.

Besides the calendar data, the service collects lots of
information from sensors in smart phones, such as wifi
signal, carrier signal, time when phones are last used, alarm
clock information in the phone, microphone using condition,
recently answered calls, recently rejected calls, running
states of SN, location, speed, accelerated speed and so on.
The process consists of two aspects, call recommendation
and text contact recommendation.

1) Call recommendation

Calls are the most direct way to reach people, but at the
same time calls disturb people most in some specific
conditions. It disturbs in two ways. Firstly, calls always
come with long time rings and vibrations that will disturb
people. Secondly, call is a synchronous communication way
that needs people to answer immediately. As a result,
people should stop their work in hand.

When calls should not be recommended, conditions can
be divided into three categories. We use two ways to figure
out the conditions. The first way is that, through activity
recognition we recognize the specific conditions of the user
we want to contact. Based on the recognized conditions we
recommend whether calls are suitable. We introduce some
conditions in details as follows.

Semantic

analysis

i
\
Calendar !
\
|
|
|
[

e e

Y

Recommended
Text Contacts

feedback—

Fig. 3. Collaborative contact recommendation service process

a) Meeting. The server gets the bound calendar data by
google calendar API. Through semantic analysis of
current event, we will know whether there are any
meetings right now. The same applies to having classes.
The recommender recommends no calls if the users we
want to contact are in periodic activities or meetings.

b) Driving. It’s relatively complex to figure out driving
because we should consider several elements. First, the
speed is relatively high, like 100 km/h. Second, the
current location should be a road rather than a room. Here
comes the third factor. If phones have not been used for a
long time, like 30 minutes, probably people are driving
and should not be recommended to call.

c) Sleeping. We find that alarms have large potential
relationships with sleep. If there is a waking up alarm,
calls should not be recommended in a short period of
time before it alarms, like 20 minutes. We also find the
periodic alarms in the morning or at noon will enlarge the
possibility of being a waking up alarm. Besides, if the
locations of phones don’t change, phones are not used for
a long time, the locations are at home, and the time is
night, there is a large possibility that people are sleeping,
or people don’t take the phone by themselves.

The second way is that we set some novel general rules
to reason the call recommendation. We take several rules
for example.

a) Carrier signals. If there are no carrier signals, calls
can’t be made successfully. The recommender will
recommend not to call people.

b) Temporal locality. Generally the situations are
continuous because doing anything will take a period of
time. If there are any rejected calls recently, probably it’s
better not to call. Vice versa. Though we don’t know
what specific situations people are in, we can still
recommend the right result.

c) Microphone. If the microphone is being used, it
implies that people are available to listen to the sound
information. If calls are not being made currently, we can
directly recommend calls.

d) Sound. If the sound sensor finds it’s a noisy
environment, the calls quality will be affected. We need
not figure out whether it’s in a KTV or a market. We
intend not to recommend calls.

When different conditions are satisfied at the same time,
we have priorities. The general rules, such as temporal
locality and microphone have the highest priority.

2) Text Contact recommendation

In the past, SMS is the most usual way to send text
among mobile phones. However, with the development of
the mobile data, people use SNS to send text messages
much more often than before because SNS are less
expensive ways, and also very convenient.

21

We choose the most popular SNS that are used as text
communication platforms, such as Wechat and QQ. The
recommender collects SNS and SMS data, and calculates
the using frequency of them, which indicates people’s
habits of using text messages. It ranks the text message
contacts based on two elements. 1) The last time the SNS
was used on desk. 2) The frequency of using the SNS. We
don’t consider the last time the SNS run, because in smart
phones if you don’t stop the program, the program will not
stop by itself.

Now we introduce how to rank the contacts list. We take
QQ and Wechat as an example. Assume Tw and Tq are
respectively the last used time of Wechat and QQ on desk.
Fw and Fq are respectively the use frequency of Wechat
and QQ. And we set a constant k, which means a time
interval. The current time is t. The Order rule:

if t>Ty> Ty >t-k or Ty >t-k> T4 then
Wechat is ranked before QQ
else if t> T>Ty >t-k or t> Tg>t-k> Ty then
QQ is ranked before Wechat
else if Ty <t-k and T4 <t-k then
if F,, > Fythen
Wechat is ranked before QQ
Else QQ is ranked before Wechat

Besides, if there is a wifi but no carrier signals, SMS will
not be recommended even people use it very often because
SMS can’t be sent to friends’ phones without carrier signals.
Finally, the recommender provides a list of ranked text
message contacts.

To make the recommendation algorithm smarter when
more people use the recommender, people are encouraged
to return feedbacks, which contain the real best contact used
in every communication.

C. Collaborative Time Recommendation Service

After users get the recommended collaborators and
contact, the user as an organizer can organize all the
collaborators for one specific task into one group.
Collaborative time recommender aims to recommend a
suitable time for all the collaborators in one group.

The organizer can set some requirements for time. For
example, the time should be at night and the length of the
time should be 2 hours. Then the recommender will get
calendar information of all the collaborators through API
provided by google and calculate the common free time
satisfying the time requirements. If there is no satisfied time,
the recommender will recommend the time when most
collaborators are free. After the organizer chooses one from
the list of free time, the recommender will inform all the
collaborators in the group about the chosen time. If

collaborators accept the time, the new event will be added
to the google calendar of collaborators.

Collaborative time recommender reduces the costs of
finding a common time and helps the arrangement of
schedule.

IV. IMPLEMENTATION OF THE APPROACH

We implement the approach as an application including
three mobile services on Android smart phones. A user
should register an account with a mobile phone number and
an Email address. The application will get contacts of the
phone, and the user can add friends through the contacts.
Besides, the user can bind his SNS accounts, such as google
calendar account and Renren account to offer more
information. The application will collect all the related data,

preprocess and send intermediate result to the server in time.

The server will get the information from bound SNS
accounts, calculate and analyze the data both from mobile
phones and SNS.

When users want to find some specific people to
collaborate with, they just type the query in the search box.
The application will return a list of friends with the related
statuses and blogs. Users can check all the information and
choose most suitable collaborators. If it’s a complex task
that needs more than one collaborator, users can add the
collaborators in one group.

To make sure the collaborations, users have many
situations to contact friends. Users can get the real time
recommendation of friends through the server so that they
can contact friends in the best way. What users need to do
is only to click the friend icon in the list and it will show
whether the friend is available to be called and list the
ranked text contact based on the user habits.

When users have a group of collaborators, users usually
need a common free time for synchronous collaboration.
Users enter the group and choose the time limitations. For
example, they can choose the length of the time and the
preference for morning or afternoon. The application will
get schedules from the bound calendars and calculate the
satisfied time. Users can choose the best one from the list
and the application will inform the rest collaborators in the
group. Collaborators can confirm the collaborative time and
the time will be allocated in the calendar.

V.EXPERIMENTS

In this section, to verify the effectiveness of the approach
and accuracy for collaborative recommendations, we design
two independent experiments. The first experiment is to
verify whether we can dig out the suitable collaborators
when the users search specific topics related to the suitable
collaborators. The second experiment is to evaluate the
service accuracy of how to contact.

22

A. Experiment results of collaborator recommendation
service

The maximum number of test users for Renren Open
Platform is ten, so we select 10 students from PKU,
consisting of 5 undergraduate students and 5 graduate
students, to use the collaborator recommender service. All
of them have never heard about the application and we
install the application in their own mobile phones and they
will feedback whether the recommended collaborators are
related to the specific topics or not.

Before the students use the application, we need them to
bind their SNS accounts on the application and we will get
their friends list, the blogs and statuses of their friends for
collaborator recommendation.

Figure 4 shows the number of the friends, friends’ blogs
and friends’ statuses for each student. To make the figure
clear, we just show the data of 3 typical users whose id are
15, 17, 18. We can see that every student has about 500
friends and the number of statuses is much more than the
number of blogs. What’s more, for every student, the data
needing to be processed is large.

After binding the SNS accounts, all the students will use
the application when they want to find the collaborators.

Data Statistics From SNS

26099

15000
10000
5000

0

~ friend _count = friend staus count = friend_blog_count

Fig. 4. Statistics data for each user

The application will recommend a sorted list of 20 relevant
collaborators after a student searches one topic related to
the collaborators. The student can click the recommended
collaborator, read the related statuses and blogs that are the
reasons why this friend is recommended, judge whether the
recommended collaborators are suitable for collaboration
and return the feedback. After the experiment, every student
has searched about 80 topics to get recommended
collaborators and we got 713 feedbacks.

Because there are many different collaborative situations
in which users will need to find different numbers of
collaborators. For Example, when users have a question
about Python programming, they just need to find one
suitable collaborator while they need about 5 suitable
collaborators when they want to develop an android
application. What’s more, they often need to find about 10
suitable collaborators to create a small discussion group and

The Accuracy of Collaborator Recommender

1.000

0.700

Accuracy

0.600

0.500

0.400

Numbers of Collaborator

Fig. 5. Accuracy for different number of collaborators

about 20 suitable collaborators to create a big discussion
group. These are the main situations when the application
will be used. So we need to calculate the accuracy for the
different situations.

Figure 5 shows the experiment results. To make the
figure clear, we just show the feedback accuracy of 3
typical users whose id are 15, 17, 18 and the total feedback
accuracy in different situations. The results show that the
accuracy for one suitable collaborator recommendation is
relatively high, which is 86.2%. With more collaborators
users want to find, the accuracy decreases. The worst
average accuracy is 44.4% when users want to find 20
suitable collaborators. That’s because the recommended
collaborator list is sorted by relevance and the later
recommended collaborators are less relative to the specific
topic, compared with the top ones.

0.0787 0.0790 0.0786

Variance

5) 10 20
Numbers of Collaborator

Fig. 6. Variance of accuracy

Figure 6 shows the variance of accuracy. It implies that
the accuracy is stable because variances of all the accuracy
are small. Besides, variance of one collaborator is smallest
which means the first recommended collaborator is most
stable to be the suitable one.

The result implies that the application is effective when
users need to find a small group of collaborators who are
related to the specific topics. It has the limitation when

23

users want to find more than 10 collaborators because there
are not enough friends on the SNS who are relative to the
specific topics.

B. Experiment results of collaborative contact
recommendation service

We find 50 students from PKU, consisting of 21
undergraduate students and 29 graduate students, to use the
collaborative contact recommender service. All of them
have never heard about the application, and we install the
application in their own mobile phones and train them for
10 minutes. They can see which recommendation is made to
their friends from the application. All the students do what
they will as usual. They are asked to take the phones with
them and check the application as often as possible and
return the feedback that contains their genuine best contacts.
If the recommendation is the same as the feedback, we
define it is right. That means users can feed back whether
the call recommendation and text contact recommendation
are right. We got 1021 pieces of feedbacks totally.

TABLE 1. CONTACT RECOMMENDATION RESULTS

Cases Ratio
Calls recommended, right 97.1%
Calls not recommended, right 82.4%
Total calls, right 92.2%
Ranked text messages contacts ,right 98.0%

Table 1 shows the experiment results. The right ratio is
relatively high. For example, when the application
recommends calls, 97.1% people are suitable to be called.
However, when the application doesn’t recommend calls,
17.6% people can be called in fact. One reason is that we
use strict principles. For example, though a man rejected a
call minutes ago, the situation may change right now, but
we still don’t recommend calling. 98.0% of the ranked text
message contacts are right, probably although many SNS
may be installed on the phones, people use one much more
than the others.

-4
i
i
2
=
z
=
rr
[
[+]
w
o

80-90
RATIO (%)

Fig. 7. People distribution in ratio intervals

Figure 7 shows people distribution in ratio intervals. We
calculate people number in different ratio intervals. Most
people have the right recommendation ratio between 80%
and 100%. It implies that the differences of
recommendation ratio among people are not that obvious.
That is to say, the application is suitable for all kinds of
people to use. The reason may be that conditions are
basically similar when people are available to answer calls.

VI. CONCLUSION AND FUTURE WORK

We design and implement a collaborative approach using
three mobile services based on SNS, calendar data, and
sensor data from smart phones. The services can help users
to find the most suitable collaborators according to specific
topics, the most appropriate way to contact collaborators,
which makes the information accessible to friends and gets
the replies from collaborators as soon as possible with least
bother, and the common free time for synchronous
collaboration. The three services can be used either together
or independently.

In the collaborator recommendation service, two
different but effective algorithms for statuses and blogs are
designed and used respectively. In the collaborative contact
recommendation service, calendar data is used for the first
time to figure out the current activity of a collaborator,
which makes the inference more sufficient. Furthermore,
smart phone data are effectively used by novel rules and
mathematical statistics to recommend the best way to
contact the collaborator. The experiments show that the
precision of collaborator recommendation and contact
recommendation is high respectively.

However, there are still several open problems that need
to be further studied: 1) The testers are all students and the
amount of feedbacks is relatively small; 2) Our synonym
dealing approach uses constant dictionary that can’t deal
with new words created every day.

ACKNOWLEDGMENTS
This effort is sponsored by the National Basic Research

24

Program of China (973) under Grant No. 2011CB302604,
the National Natural Science Foundation of China under
Grant No0.61421091, No.U1201252, the Seeding Grant for
Medicine and Information Sciences of Peking University
(2014-M1-23).

REFERENCES

http://www.renren-inc.com/en/

(1]

[2] Weilong Yao, Jing He, Guangyan Huang, Yanchun Zhang. SoRank:
Incorporating Social Information into Learning to Rank Models for
Recommendation, In Proceedings of 2014 World Wide Web

Conference (WWW’14), Seoul, Korea, April 7-11, 2014, 409-410.

Kuifei Yu, Baoxian Zhang, Hengshu Zhu, Huanhuan Cao, Jilei Tian.
Towards personalized context-aware recommendation by mining
context logs through topic models. In Proceedings of the 16th
Pacific-Asia conference on Advances in Knowledge Discovery and
Data Mining (PAKDD 2012), Part I, LNAI 7301, pp. 431-443, 2012.

Xiwei Zhuang, Yanchun Sun, Kuiwei. A Smart Mobile Contact
Recommender Based on Smart Phone Data. In Proceedings of ACM
Internetware 2014 (Internetware’14), Hongkong, Nov. 16-21, 2014.

(3]

[4]

[5] Bin Xu, Jiajun Bu, Chun Chen, Deng Cai. An Exploration of
improving Collaborative Recommender Systems via User-Item
Subgroups. In Proceedings of 2012 World Wide Web Conference

(WWW’12), Lyon, France, April 16-20, 2012, 21-30.

Ido Guy, Uri Avraham, David Carmel, Sigalit Ur, Michal Jacovi,
and Inbal Ronen. Mining Expertise and Interests from Social Media.
In Proceedings of 2013 World Wide Web Conference (WWW 2013),
Rio de Janeiro, Brazil, May 13-17, 2013, 515-526.

[6]

[7] Elnaz Davoodi, Mohsen Afsharchi, Keivan Kianmehr. A Social
Network-Based Approach to Expert Recommendation System. In
Proceedings of Hybrid Artificial Intelligent Systems (HAIS 2012),

Lecture Notes in Computer Science Volume 7208, 2012, 91-102.

Xin Liu, Karl Aberer, SoCo: A Social Network Aided Context-
Aware Recommender System. In Proceedings of 2013 World Wide
Web Conference (WWW 2013), Rio de Janeiro, Brazil, May 13-17,
2013, 781-791.

Min J K, Kim H T, Cho S B. Social and Personal Context Modeling
for Contact List Recommendation on Mobile Device[C]. In
Proceedings of Web Intelligence and Intelligent Agent Technology
(WI-IAT'08), 2008, 381-384.

Gomes J B, Krishnaswamy S, Gaber M M, et al. Mobile activity
recognition using ubiquitous data stream mining[M]. In Proceedings
of 2012 Data Warehousing and Knowledge Discovery. Springer
Berlin Heidelberg, 2012, 130-141.

Blei D M, Ng A Y, Jordan M 1. Latent Dirichlet allocation. Journal
of Machine Learning Research, 2003, 3: 993-1022

Quan Yuan, Gao Cong, Chin-Yew Lin. COM: a Generative Model
for Group Recommendation. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD’14),
New York, NY, USA, August 24-27, 164-172.

Ge Gao, Pamela Hinds, Chen Zhao. Closure VS. Structural Holes:
How Social Network Information and Culture Affect Choice of
Collaborators. In Proceedings of 2013 ACM’s conference on
Computer Supported Cooperative Work (CSCW’13), San Antonio,
Texas, USA, Feb. 23-27, 2013, 5-17.

[8]

9]

[10]

(1]

[12]

[13]

[14] Salton G, Buckley C. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 1988, 24(5):

513-523.
[15]

Mihalcea R, Tarau P. Textrank: bringing order into texts. In
Proceedings of 2004 Conference on Empirical Methods in Natural

Language Processing, 2004, 404—411.
[16] http://www.keenage.com/

