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Abstract—Frequent pattern mining has been an important and
well-researched data mining task in recent years. In this paper, we
propose a paralleled algorithm based on the Prepost algorithm,
which obtains a better performance compared with other classical
algorithms.
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L INTRODUCTION

Frequent Itemset Mining (FIM) algorithm as the basis of
Frequent Pattern Mining, is generally utilized in large scale
databases to find universal and potentially valuable patterns. In
FIM algorithm, the data in databases are define as transactions,
which are sets of times each with a unique ID. The purpose of
FIM is to find subsets of transactions that “appears frequently”.
The criterion of frequency is defined by the “support ratio”,
which is the ratio of number of transactions containing a given
itemset and the total number of transactions in the original
database — only when the support ratio of a given itemset is not
less than the predefined “minimum support threshold”, can it be
defined as “frequent”. FIM algorithm returns all itemsets that
satisfy the minimum support threshold.

Frequent Pattern Mining have a very wide utilization in
fields of scientific research and commercials. A classic case is
to analyze the sales records of a local super market. The result
of the algorithm finds out some common patterns, for example,
vegetables with fruits, bear, diaper with cigarettes, etc. And the
analysis makes it possible for the arrangement of goods to follow
a certain rule: putting the goods that are frequently purchased
together accelerates the speed of customer flows; Or doing the
opposite in smaller super markets to augment the chances that
the customers purchase other goods when they are looking for
what they first want. FIM algorithm are also applied to areas of
database management system and information retrieval.

The research focus of this paper lays on the parallelization of
PrePost [1] [2] algorithm, which is a state-of-the-art algorithm
for mining frequent itemsets, in order to get a higher efficiency
in larger and denser datasets.

II.  RELATED WORK

Currently, the mainstream FIM algorithms are Apriori [3],
Eclat [4], FP-Growth [5] and PrePost.

The processes of Apriori and Eclat are both generating the
k+1-itemsets by k-itemsets iteratively, until all no more itemsets
could be generated. Every step the algorithm combines two k-
itemsets that have the same prefix to get the k+1 candidate
itemsets with one more scan of the original database to filter out
all the candidates that do not satisfy the minimum support
threshold. Frequent databases scans are inevitable in this kind
of algorithms.

FP-Growth, on the other hand, scans the original database
only twice to get the preliminary frequent item head table and
item prefix subtree. The head table and subtree together are
defined as a FP-Tree. The head table comprises of the ID of an
item, support ratio and a pointer to the corresponding node in the
item prefix subtree, and is sorted in descending order of support
ratio. The item prefix subtree is a prefix tree with a null-value
root, that saves item ID and the support ratio of that item in the
corresponding node. For a given node N in the FP-Tree, in the
paths from the root node to node N, the partial paths that do not
contain node N are called the prefix sub path of node N, while
N is the postfix of the paths. All the prefix sub paths of node N
in the FP-Tree are defined as the Conditional Pattern Bases of
node N. The FP-Tree constructed from the Conditional Pattern
Bases are called the Conditional Pattern Tree of N. The basic
thought of FP-Growth algorithm is to start from length 1
frequent pattern, and construct its Conditional Pattern Bases, and
thus its Conditional Pattern Tree. The process goes iteratively
while the pattern grows by concatenating frequent patterns
generated by the Conditional Pattern Tree. The advantage of FP-
Growth is that it only scans the database twice, and there is no
need for candidate generation, while the whole algorithm runs
on the highly compressed data structure FP-Tree. Nonetheless,
FP-Growth complicated the problem by constructing the FP-
Tree when the minimum support threshold is relatively low or
the dataset are especially sparse.

PrePost algorithm combines the upsides of the two
aforementioned algorithms. PrePost algorithm first build a PPC-
Tree that resembles FP-Tree, but with extra pre-order and post-
order information stored in the node. The algorithm then extracts
from the PPC-Tree to construct a data structure called N-List.
The initial N-List contains 1-frequent itemsets as well as the pre-
order, post-order and the corresponding support ratio for evey
the PPC-Tree node. The process of mining is to combine the N-
List nodes of two k-frequent itemsets, thus generating the k+1-
frequent itemsets. The combination utilizes the pre-order and
post-order number to determine the relationship of two nodes in



the original PPC-Tree, without maintain an actual tree data
structure as in the FP-Growth algorithm. From the experiment
results of paper [1], PrePost is the optimal algorithm in all
circumstances, and the design of the algorithm satisfy the
condition of parallelization. Therefore we decided to research on
the parallelization of PrePost.

Apriori [6] [7], Eclat [8], FP-Growth [9] already have
corresponding CPU parallelized implementation, while FP-
Growth [10] and PrePost have implementation based on
MapReduce. The basic thought of MapReduce PrePost is to first
group the dataset with Round-Robin, and then generate the
frequent itemsets as discussed above. Among all the algorithms
aforementioned, only Apriori have GPU parallelized
implementation [12] [13].

III.  PREPOST OVERVIEW

Prepost is a frequent pattern mining algorithm published by
Prof. Zh Deng in 2012. It uses a novel data structure “N-List” to
represent the frequent patterns. In Prepost, all the frequent
patterns are found by the intersection of several N-Lists. Given
two n-length N-List, the intersection can be done in O(n) time
complexity. The high-compressed data structure and the low
time cost of merging make Prepost a very efficient algorithm for
mining frequent patterns.

A. Data Structure

Prepost constructs a PPC-tree first to restore the data in the
database. The initial N-Lists are created by traversing this PPC
Tree.

1) PPC Tree

PPC-tree, the basis of N-list, is a tree structure similar to FP-
tree in FP-Growth algorithm. It consists of one root labeled as
“null”, and a set of item prefix subtrees as the children of the
root. Unlike FP-tree, each node in PPC-tree contains five fields:
item-name, count, children-list, pre-order, post-order.

2) PP-Code
For each node N in a given PPC-tree, we call
<(N.pre,N.post):count>

the PP-code of N.

3) N-List

Given a PPC-tree, the N-list of a frequent item is a sequence
of all the PP-codes of nodes registering the item in the PPC-tree.
The PP-codes are arranged in an ascending order of their pre-
order values.

4) Example
For a clear understand of the PPC-tree and N-List, see the

example below. Figure 1 is an example database, including 5
transactions. To construct a PPC-tree, we first sort each

transaction by the item support and then remove the infrequent
item (support = min support) from it as well. Then we insert
each transaction into the tree. The completed PPC-tree is shown
in Figure 2. After the PPC-tree is built, we traverse it to get the
PP-Code of each node. Finally we collect the PP-Code of every
item to get the 1* N-Lists (N-Lists of 1-frequent patterns).
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Figure 1: A example database
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Figure 2: The PPC-tree built from the database in Figure 1

b —> <48): 4>

€ —> (12): 1> ---<(5,6): 3>

e —> <(65):3>

f—> <211 - <BA: 1> --- <O,7): 1>

a —> <(3,0): 1> ---<(73): 1>
Figure 3: The initial 1" N-Lists of Figure 1

B. Process

From the definition of N-List, we can see that N-List
represents the structure of the tree, and thus represents the
whole database. Therefore, the tree structure is no longer useful
and all the mining process can be done only on the N-List.
Quite like Apriori, Prepost generates (n+1)th N-Lists from the
n™ N-Lists. We intersect the N-Lists of two patterns with the
same postfix to get a new N-List of a longer pattern. For
example, by intersecting N-Lists of pattern “ab” and “cb”, we
can get the N-List of pattern “acb”. Then we check if the
support of “acb” is less than minimum support. If yes, we do
not proceed with it. Otherwise we keep the N-List and continue
the mining task. Prepost repeats such process until no N-List of
frequent patterns are available for further mining.

For details and correctness of this algorithm, you may refer to
[1], the original paper of this algorithm.

The following is the pseudo-code of algorithm:

Function: mining(L,, NL;)
Input: k-frequent pattern L, and their N-list NL;

1: fori « L,.size() —1to1ldo




2 Liy < 9

3 NLi,, <@

4: forj=i—1to0do

5: merge L, [i], L,[j] to get new pattern [
6: L. Nlist = NL_intersection(NL,[i], NL;[j])
7 if l.count > |D|x§ then

8: Liy < L V{1

9: F < Fu{l}

10: NL.,, « NL.,, U{l.Nlist}

11: end if

12: end for

13:  if L, # O then

14: if NL,[i].length() = 1 then

15: Assumethat L, ; = {P,..P,}s P, =y;x1%x,..%;
16: foranyp =y, 1¥,;.. YyuX1X2.. X do
17: p.count « NL,[i]. count

18: F « F U {p}

19: end for

20: else

21: mining(Li,,NLL, )

22: end if

23: end if

24: end for

IV. DESIGN AND IMPLEMENTATION OF GPU-PREPOST

A. Introduction to CUDA

CUDA, which stands for Compute Unified Device
Architecture, is a parallel computing platform and application
programming interface (API) model created by NVIDIA. It
allows software developers to use a CUDA-enabled graphics
processing unit (GPU) for general purpose processing — an
approach known as GPGPU. The CUDA platform is a software
layer that gives direct access to the GPU's virtual instruction set
and parallel computational elements.

B. Parallelism of Prepost

To get a better understanding of the process of Prepost, we
draw a Set Enumeration Tree in Figure 4. In this tree, each node
represents a frequent pattern, containing all the elements on the
path from this node to root. Besides, a (n+1)Ih level node is
generated by two n™ level nodes in Prepost. This tree clearly
indicates the whole process of the mining process of Prepost.

From the structure of tree, we can find that the process of
mining nodes under different branches is independent. In the
mining process of a node N, only N’s siblings are useful, the
other nodes will never interfere with the mining of N and N’s
children. Note that the nodes under different branches have
different postfix. We then come to a conclusion: The mining
process of patterns with different postfix can be paralleled.

Based on this idea, we can easily design a paralleled
algorithm for Prepost. We do the mining of nodes with different
postfix at the same time.
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Figure 4. The Set Enumeration Tree

C. Implementation of GPU-Prepost

Considering the strong computing ability of Graphical
Processing Unit (GPU), we decide to use CUDA, a GPU-based
parallel computing architecture to implement our algorithm.

The process of GPU-Prepost algorithm can be divided into
three following parts.

1) PPC-tree Construction

Since this part requires lots of IO operations, we do this on
CPU, just like the original Prepost algorithm.

2) Paralleled Mining

In this part, we utilize the parallelism of GPU to our mining
process. We use breadth first search (BFS) to iteratively do our
mining task. (n+/ )”’ frequent patterns are generated after all the
n" frequent patterns are generated.

To make our algorithm paralleled, we dispatch one thread for
each node to do the mining task. Note that each thread in a block
can access a shared memory for this block in CUDA. In order
to let a node and its siblings share info with each other, we put
the nodes with the same postfix into the same block in CUDA.

After the PPC-tree construction, we already have the initial
1* N-Lists in CPU. We then pass them from CPU to GPU by
copying them to GPU memory. The GPU then generates the P
N-Lists by intersecting the 1*' N-Lists simultaneously. When all
the 2" N-Lists are generated, we return them from GPU to CPU
in order to save the results. We repeat the process until no
further N-Lists are available: CPU prepares n” N-Lists — GPU
mines n” N-Lists to generate (n+1)" N-Lists — CPU saves
(n+1)" N-Lists. When the algorithm terminates, we get all the
frequent patterns in CPU.

The pseudo-code of the kernel function in CUDA is as
follows:

Function: generate_next_level(NL,)
Input: kth N-Lists NL,,
Output: (k+1)% N-Lists NL; 4

1: NLy,, <0

2: i = threadldx.x + blockDim. x * blockldx. x

3: forj=i+1toNL,.size() do

4 l; = NL,[i]

5 [ = NL[j]

6: if l;. label and l;.label shares the same postfix then
7 l = NL_intersection(l;, ;)

8: if l.count > min _support then

9: NLyyy < NLyyq U {1}

10: end if
11: end if
12:end for

3) Details of GPU-Prepost

Due the the limitation of CUDA, we must pass a fixed array
from CPU to GPU. However, both the number of frequent
patterns and the length of N-Lists vary from level to level. A
naive idea is to set the size of the array to a large number. But
it is definitely a waste to use a very large array to restore our N-
Lists, since lots of redundant data structures are passed to GPU.
So instead of using a big array for always, we count the upper



bound of the length of the N-Lists of the next level in the mining
process.

Actually, we pass a 3-d array NL,[n][m][3] as our N-List
structure to GPU. n represents the number of frequent patterns
at this level; m represents the maximum length of N-List at this
level; 3 represents the three fields of PP-Code: pre, post and
count. We use the following two rules to determine the size of
n and m:

* Avoid d Assume ny, is the number of frequent patterns in
level k, then we have ny,; < %nk (ng — 1). This can be
easily proved by showing that %nk (ng —1) is the
maximum number of the pairs of n,,; N-List.

* Assume ny is the number of frequent patterns in level k,
then we have ny,, < %nk (ng — 1). This can be easily
proved by showing that %nk (ng — 1) is the maximum
number of the pairs of n; 4 N-List.

V. RESULT

A. Experiment Setup

Table 1 contains the experiment environment, in which All
codes are compiled and experimented. Table 2 is the datasets
chosen for the experiments (source: http://fimi.ua.ac.be/data/).

TABLE 1. EXPERIMENT ENVIRONMENT
Operating System Ubuntu 12.04
Memory 64 GB
CPU Xeon E5-2620
GPU NVIDIA Tesla K20
TABLE II. EXPERIMENT DATASETS
Dataset Parameters
Avg.length #ltems #Trans
mushroom 23 119 8,124
T10I4D100K 10 949 98,487
T40110D100K 40 942 92,113

Table 3 contains the minimum support threshold chosen
according to the datasets and number of corresponding frequent

items.
TABLE III. EXPERIMENT DATASETS
Parameters
Dataset
Avg.length #ltems #Trans
mushroom 23 119 8,124
T10I4D100K 10 949 98,487
T40I10D100K 40 942 92,113

B. Experiment Results

The experiments are conducted by the comparison of Apriori
[3], GPApriori [13] [14], PrePost [1] algorithms and GPU-
PrePost algorithm proposed in this paper from two aspects.

1) Runing Time
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Figure 5: Running time on Mushroom
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Figure 6: Running time on T10I14D100K

Figure 5-7 are the running time comparison of the aforesaid
algorithms. X-axis stands for the minimum support threshold,
Y-axis stands for the running time, excluding time for input and
output.

Figure 5 is the running time comparison on Mushroom
dataset. It is clear that the two parallelized algorithm out
performs the others. And GPU-PrePost wins in larger datasets.

Figure 6 is the running time comparison on T1014D100K
dataset, which is a dataset of great sparsity, even when the
minimum support threshold is very low, there are still only a few
frequent itemsets. It is clear that the two parallelized algorithm
out performs the others, but there is no big difference between
parallelized ones.
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Figure 7 is the running time comparison on T4014D100K
dataset, which is also a dataset of great sparsity, but when the
minimum support threshold is very low, the density grows. still
only a few frequent itemsets. It is clear that the two parallelized
algorithm out performs the others, but there is no big difference
between parallelized ones. Upon observation, GPU-PrePost
takes more time than GPApriori, this is because the initialization
of N-List gives more overhead in GPU-PrePost, while the
simply structured GPApriori only need to finish the easy mining
task.

2) Speedup Ratio

From the speedup ratio experiments, GPU-PrePost
algorithms shows 10-100 times acceleration compared to
traditional algorithms, and, though performs nearly the same
when datasets are sparse, still out performs the GPApriori
algorithm by 2.5 times when the datasets are dense.
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Figure 8: Speedup Ratio on Mushroom. PrePost as baseline.
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Figure 9: Speedup Ratio on T1014D100K. PrePost as baseline.
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Figure 12: Speedup Ratio on T10I14D100K. GPApriori as baseline.

on
. FP-Growth
=== PrePost
=1 GPApnori
C——) GPU-PrePost
1k - . = — — -
Q
k] -
o
a
E]
3
&
2]
05 4
0 18 14 B . P l ol
0 05 1 2 25 3

15
Minimum support(%)

Figure 13: Speedup Ratio on T10I14D100K. GPApriori as baseline.

VI. CONCLUSION

This work researches and analyzes the state-of-art Frequent
Pattern Mining algorithm PrePost, and discusses the possibility
for parallelization. Considering the independence of N-List
nodes with difference postfix, we proved that it is possible to

parallelize the process of PrePost and thus augment its efficiency.

According to the basic idea mentioned above, we proposed
GPU-PrePost algorithm based on CUDA, and implemented this
algorithm. The experiments have proved the GPU-PrePost

algorithm out performs other algorithms in most circumstances.
Meanwhile, this result shows that GPU model are compatible for
generic data mining tasks. By utilizing the high calculation
capability of GPU, it is possible to accelerate traditional data
mining algorithms significantly. This would be of great value for
future data mining algorithm researches.
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